Нечеловеческий разум

На плечах гигантов 

Современные достижения в области искусственного интеллекта и когнитивных технологий иногда способны вызвать легкую оторопь — особенно у человека из ХХ века, который помнит первые шаги в этом направлении. В том числе и в Сибири. Здесь всё начиналось с Вычислительного центра СО АН СССР, где понятие «искусственный интеллект» впервые прозвучало в 1964 году, а самая первая кандидатская диссертация, защищенная Владиславом Леонидовичем Катковым годом позже, была посвящена программной системе КИНО (Координаты ИНфетизимального Оператора), реализующая идеи Льва Васильевича Овсянникова в теории групп. Эти результаты по уровню компьютеризации математического интеллекта остаются актуальными и в наши дни.

Следующая веха — 1965 год, когда два будущих академика, Андрей Петрович Ершов и Гурий Иванович Марчук, сделали совместный доклад по человеко-машинному взаимодействию на международном конгрессе IFIP (International Federation of Information Processes).  Под патронажем А. П. Ершова в его отделе открылась лаборатория искусственного интеллекта, которую возглавил талантливый математик Александр Семенович Нариньяни. Этот коллектив с тем же названием сохранился до сегодняшнего дня под руководством Юрия Александровича Загорулько в Институте систем информатики им. А.П. Ершова СО РАН. В мае 2021 года отмечается 100 лет со дня рождения академика Николая Николаевича Яненко, который проработал в ВЦ 13 лет, а позже стал директором Института теоретической и прикладной механики, у него есть цикл работ по аналитическим преобразованиям на ЭВМ: это тоже не что иное, как высшее проявление искусственного интеллекта.

На прошедшем в начале апреля заседании Клуба межнаучных контактов прозвучало сразу несколько докладов, посвященных истории и текущему состоянию сибирской школы искусственного интеллекта. Сегодня она развивается в нескольких организациях: упомянутом ИСИ СО РАН, Институте математики им. С.Л. Соболева СО РАН, Институте вычислительной математики и математической геофизики СО РАН, ФИЦ «Институт вычислительных технологий»,  иркутском Институте динамики систем и теории управления им. В.М. Матросова СО РАН.

Сибирская школа информатики, у истоков которой стоял А.П. Ершов, поднявший на щит лозунг «компьютерная грамотность», породила феномен так называемой «Силиконовой тайги» — армию программистов высочайшего уровня, которые работают в огромном количестве IT-компаний. Часть из них входит в отраслевые объединения — такие как ассоциация «СибАкадемСофт» или АНО «Кластер искусственного интеллекта», другие сами по себе являются гигантами вроде Центра Финансовых Технологий, «2ГИС», «Алекты» или «Дата Ист», наконец, действуют сотни малых фирм и самозанятых профессионалов-«айтишников». В области развития систем искусственного интеллекта они решают широчайший круг задач: создают не только новые сервисы, но и автоматизированные промышленные платформы («Торнадо» и ему подобные), цифровых двойников нефтяных и прочих месторождений, системы управления транспортом и летательными аппаратами и его имитаторы, вплоть до тренажеров для космонавтов.  Для экосистемы новосибирского Академгородка особо важно то, что многие коллективы нацелены на автоматизацию обработки и анализа научных данных, будь то тысячи космических снимков или огромные массивы информации с экспериментальных установок. Новые большие проблемы для наукоёмкого программирования в СО РАН ставит мегапроект СКИФ, требующий фактически создания виртуального двойника уникального комплекса.

Со сравнительно недавних пор, лет 6-7, я сам вплотную занимаюсь искусственным интеллектом (хотя первая моя работа, совместная с Н.Н. Яненко, была опубликована в 1984 г.), но в применении к математическому моделированию процессов и явлений, ставшему в наш суперкомпьютерный век третьим путём получения знаний, наряду с теоретическими и экспериментальными исследованиями, как это предсказывалось М.А. Лаврентьевым ещё 60 лет назад. Эта новая производительная сила интегрирует теоретическую и вычислительную математику, решение междисциплинарных прямых и прикладных задач, технологии прикладного программирования.

Мы можем удивляться чудесам интеллектуальных сервисов вроде способного на импровизации киберсобеседника Алисы, но за каждым таким феноменом  стоит длинная цепочка разработок, опирающаяся на фундаментальные подходы к «глубокому обучению» и системам принятия решений на основе обработки огромных объемов данных, невозможных без создания уникального программного обеспечения нового поколения (scientific software), составляющего инструментальное окружение или экосистему и одушевляющего всю мировую суперкомпьютерную сеть с персональными гаджетами и облачными концепциями.

      Наука в цифре

Наряду с искусственным интеллектом и стоящей за ним Computer Science появилась Data Science как отдельное научное направление. Суть в том, что программы не только генерируют численные решения, но и зачастую с этой целью оперируют огромными объемами данных, получаемых человечеством: космических, экономических, медицинских, климатических и так далее. Сказать «оперируют» — значит, представить триллионы действий, подавляющее большинство которых генерирует сама программа. Появилась даже противоестественная тенденция рассматривать Big Data как альтернативу наукоемким вычислениям. В действительности  при всестороннем математическом анализе данных мы неизбежно выходим на уровень Deep Learning — глубокого, или глубинного, обучения машины (точнее, базовых программ) самой себя. Это позволяет строить более-менее адекватные цифровые модели природных либо антропогенных процессов и явлений.

Deep Learning сегодня дополнило качественную теорию дифференциальных уравнений, лежащую в основе любого математического моделирования. В свое время именно математики использовали методы, базирующиеся на этой теории, и открыли ряд физических явлений — таких как солитоны или волны-убийцы. В наши дни  Deep Learning позволяет создавать сложные комплексные модели динамических систем: таких, к примеру, как пандемия, с обработкой гигантских массивов данных разных уровней, от клетки до международных сообщений.

Примером  динамической системы в естественнонаучной сфере является строящийся источник синхротронного излучения  СКИФ, который проектируется одновременно в двух воплощениях — физическом и цифровой модели. Создание установок класса mega science актуализирует проблему наращивания возможностей суперкомпьютеров, способных обрабатывать поступающую с них информацию. Сегодня мы видим невиданный экспоненциальный рост компьютерных мощностей по закону Мура, то есть за очередные 11 лет в 1 000 раз увеличивается производительность как среднего компьютера, так и самого мощного. В 2008 году человечество вступило в эру петафлопсных компьютеров, в прошлом году предполагался выход на уровень экзо-, но, видимо, сказалось замедление глобальных процессов в связи с пандемией. Я уверен, что в 2021-2022 годах появление экзофлопсного суперкомпьютера произойдет, и, скорее всего, в Китае. Это  будут уже сотни миллионов и миллиарды процессоров и вычислительных ядер, новая математика и новое программное обеспечение.

Вместе с суперкомпьютером появляются и суперзадачи, например, комплексного анализа ситуации, которую исследовала Большая Норильская экспедиция СО РАН. Причина катастрофы была точно установлена, ее последствия просчитаны и уточнены, теперь надо идти дальше — строить комплексную систему мониторинга и моделирования сразу нескольких динамических систем. Это, прежде всего, состояние многолетнемермерзлых  грунтов в определенном климатическом контексте с упором на многофазные фильтрационные процессы, напряженно-деформированные состояния и тепловые режимы.

К сожалению, Россия в мировой суперкомьютерной гонке занимает очень скромные позиции. В мировой ТОР-500 мощнейших вычислительных систем входит «Ломоносов», созданный в МГУ еще в начале нулевых годов. В рамках программы «Академгородок 2.0» рассматривается создание двух суперкомпьютерных центров — СНЦ ВВОД и «Лаврентьев». Оба предусматривают уровень порядка 10 петафлопс, аналогично, кстати, вычислительной мощности ядерного центра в Сарове. Это нужно, это востребовано, но уже сегодня далеко от глобального фронтира. Надо четко понимать, что высокопроизводительные вычисления, математическое моделирование и суперкомпьютерная грамотность — это не самоцель, а средство  кардинального ускорения прогресса во всех науках и индустриях, которое уже играет роль лимфатической или нервной системы для различных сфер человеческой деятельности.

Китай, США, Япония наращивают мощности и  темпы, а мы всё больше отстаем. В недавно прозвучавшем послании Федеральному собранию президента России говорилось о необходимости научных и технологически прорывов. Они не представимы без «нового матмоделирования», опирающегося на суперкомпьютеры и супервычисления — направления, которое должно развиваться опережающими темпами не только в столичных городах, но и во всех крупнейших центрах страны, таких как новосибирский Академгородок. Пока же мы, метафорически выражаясь, рискуем не успеть на подножку последнего вагона уходящего экспресса, тогда как должны попасть в первый класс нового Ноева ковчега.

      Искусственный — не значит противоестественный 

На упомянутом заседании Клуба межнаучных контактов академик Юрий Леонидович Ершов сказал: «Я не знаю, что такое искусственный интеллект, но было бы хорошо математикам разобраться в своём хозяйстве и поставить точки над i». Попробую дать своё определение: искусственный интеллект (ИИ) — это совокупность алгоритмических, программных, информационных и аппаратных решений, реализующих задачи логического вывода и систем принятия решений на основе онтологических принципов и когнитивных технологий.

Согласно такому определению любую программу можно определить интеллектуальной, почему бы и нет? Ведь искусственный интеллект, равно как и человеческий, имеет множество качественных степеней развития и специфических различий. Интеллект неандертальца ниже по уровню, чем у современного Homo Sapiens, у маленького ребенка — всё же примитивнее, чем у взрослого, а мышление математика отличается от склада ума гуманитария.  То есть, с одной стороны, я абзацем выше рискнул сформулировать what is искусственный интеллект, а с другой стороны понимаю, что речь идет о множественной сущности, имеющей массу проявлений.

Возьмем то же определение Тьюринга, несколько экстремистское: если, задавая вопросы человеку и «машине», мы не сможем идентифицировать принадлежность ответов, то их интеллектуальные способности равны. Такой подход интригует, как интригует любой тест, но он сужает понятие интеллекта до треугольника «онтологии — семантика — логика» и не учитывает, например, ту же эмоциональную сферу, которая является (и видимо еще надолго) прерогативой человека и высших животных, но никак не роботов.

То есть мы говорим «искусственный интеллект», а не «искусственное сознание», эти понятия нужно четко разделять. IQ можно измерить не только у человека, но и у программы, кибернетической системы. И если трактовать интеллект в узком смысле слова, тогда ИИ на самом деле способен вполне адекватно заменить некоторые наши мыслительные функции. Например, за последние 10 лет я ощущаю настоящий скачок в развитии машинного перевода: перестал, как раньше, писать научные статьи по-английски (хотя владею им свободно, постоянно читаю лекции за рубежом) и перешел на русский. Пишу текст, гугл переводит, я потом правлю, но не очень сильно.

Столь же впечатляющие результаты ИИ показывает в комбинаторных играх, таких как го и шахматы. Кстати, первый международный турнир шахматных программ состоялся в 1974 году на конгрессе IFIP в Стокгольме, тогда в первый (и, увы, в последний) раз победила советская «Каисса». Шахматные программы писали и в нашем Вычислительном центре. Вдохновленный посещением института Михаилом Ботвинником, Владимир Бутенко по этой теме защитил кандидатскую диссертацию, хотя дошел только до миттельшпиля. 

В те же годы прошла бурная дискуссия о том, способна ли программа играть на уровне мастера. Считали, что это нереально, а теперь шахматные программы обыгрывают даже Гарри Каспарова. Который, кстати, предложил как новый вид спорта «Активные шахматы», в котором соревнуются пары «человек+компьютер» — известно же, что все гроссмейстеры, готовясь к соревнованиям, пользуются виртуальными помощниками, используя огромные базы партий по противникам. Однако во время матчей им категорически запрещается пользоваться компьютерами, а Каспаров, напротив, предложил это узаконить. Шахматная федерация не поддержала его, но неофициально Гарри Кимович такой турнир организовал. И оказалось, что чаще побеждает пара не с участием супергроссмейстера или суперпрограммы, а та, где наиболее эффективно налажено человеко-машинное взаимодействие.

Шахматная партия — это обмен решениями. Поскольку большинство систем ИИ нацелено на принятие таковых, то условно каспаровская идея «двух ключей» способна смягчить, а то и полностью снять оппозицию «человек VS ИИ». Сегодня мы пока что наблюдаем в основном обратное — драматизацию взаимоотношений человечества с когнитивными системами и пессимистические прогнозы. В нашумевшем эссе Андрея Курпатова «Четвертая мировая война» проводится мысль о том, что ИИ вытеснит интеллект Homo sapiens, как в свое время сам sapiens вытеснил неандертальца, поскольку был интеллектуальнее. Эта же угроза обозначена в концепт-манифесте проектного семинара программы «Академгородок 2.0».   На упоминавшемся заседании Клуба межнаучных контактов его сопредседатель, лауреат премии «Глобальная энергия» академик Сергей Владимирович Алексеенко высказал предположение о жизнеспособности теории трансгуманизма, согласно которой будет происходить замещение человечества всё более и более киборгизированными созданиями. Мол, проблему бессмертия сменит проблема самоуничтожения, саморастворения человека в мире таких существ.

Я не футуролог и не собираюсь им казаться. Выскажу лишь несколько отрывочных соображений. Во-первых, чем шире область и дальше горизонт любого прогноза, тем меньше его сбываемость. Во-вторых, у каждого технологического прорыва есть порог применимости. В те же 1960-е годы будущее использование атомной энергии виделось тотальным, вплоть до домашнего и коммунального хозяйства, но нет, миниатюризация и диферсификация в этой области не состоялись. Третий момент — экономический: интеллектуальный робот в течение долгих лет будет оставаться дороже человека даже в тех странах, где его жизнь ценится очень высоко.

И наконец, экспериментально (пока только на примере шахмат) доказано, что максимальную эффективность в принятии оптимальных решений дает не человеческий мозг и не искусственный интеллект, а их сочетание. Видимо, развитие систем управления пойдет именно по этому пути — пути комбинирования способностей и компетенций.

Иллюстрации из открытых источников

Познавательный марафон

Чистые помыслы

Тема была анонсирована широчайшая — экология и здоровье. Основным спикером выступил председатель Сибирского отделения РАН академик Валентин Николаевич Пармон. Не удивительно, что его доклад был посвящен инициативам СО РАН в экологической сфере. «Большая Норильская экспедиция уже вошла в историю», — констатировал В. Пармон. В том числе и тем, что с «Норникелем» на берегу была достигнута и полностью выдержана договоренность: никакой ангажированности — что ученые обнаружат, то и представят общественности. На самом деле, при всем накале страстей вокруг разлива топлива на норильской ТЭЦ-3 в мае прошлого года,  СО РАН и оперативно организованный им полевой отряд оказались вне критики.  А успех породил последствия на перспективу. «Поскольку последствия норильской аварии будут проявляться не один год, — подчеркнул глава СО РАН, — мы продолжаем долговременное сотрудничество с “Норникелем”, что обеспечило организацию Научно-исследовательского центра “Экология” в структуре Сибирского отделения». По словам Валентина Пармона, появились аналогичные запросы и от других крупных российских компаний, имеющих схожие с «Норникелем» проблемы.

Другими начинаниями СО РАН в сфере экологии были названы консорциум под стомиллионный грант Минобрнауки РФ на создание цифрового двойника озера Байкал и учреждение Научного совета по проблемам экологии Сибири и Восточной Арктики как стратегического штаба и мозгового центра: «В науке полагается сначала корректно поставить задачу, затем подобрать адекватный инструментарий, и только после этого приступить непосредственно к работе». В этой работе В. Пармон выделил две целевые линии: сохранение природного разнообразия и трансформацию окружающей среды «в дружественную для человека». В Научном совете предполагается несколько тематических секций: по экологии городов, наземным экосистемам, водным ресурсам. Впрочем, процесс их формирования и самоопределения только начат.

 

Выступает Валентин Пармон

Доклад Валентина Пармона был стержневым, но далеко не единственным. Тон задавали математики, поскольку современная экология непредставима без моделирования состояний окружающей среды и ее элементов: воздуха, земной и водной поверхностей, биосферы и всего прочего. Председатель Клуба межнаучных контактов член-корреспондент РАН Сергей Игоревич Кабанихин (МЦА НГУ) выступил с обзором по теме мониторинга и моделирования качества воздуха. Во многих крупных городах оно оставляет желать много лучшего, в списке самых проблемных названы сибирские Братск, Новокузнецк, Омск, Чита и Норильск.

«В каждом городе, в зависимости от местных условий, выбирают свои приоритеты для достижении поставленной цели — повышения качества воздуха», — констатировал Сергей Кабанихин. Например, в Алматы подсчитали, что местные ТЭЦ дают около 23 тысяч тонн выбросов в год, а автотранспорт — 190 тысяч. И когда в городе ввели ограничительные меры в связи с Covid-19, небо очистилось за несколько дней. Аналогичный проект с участием сибирских ученых реализуется в Шанхае со свойственным современному Китаю размахом. Состав атмосферы мониторится десятками беспилотников, на покупку электромобилей выделяются государственные и муниципальные субсидии, а госрегистрацию и номерные знаки их владельцы получают бесплатно.

Профессор Александр Бакланов из исследовательского департамента Всемирной метеорологической организации под эгидой ООН (World Meteorological Organization,WMO) вышел на связь из Швейцарии и рассказал о международной программе оздоровления климата и долгосрочного экологического развития городов. Она распространяется на 30 мегаполисов мира, включая Москву (с участием РАН, МГУ, Росгидромета и т.д.). «Экономические факторы и ущербы от загрязнения окружающей среды и изменения климата для различных секторов города и для здоровья являются ключевыми для комплексного решения задач устойчивого развития экологически и климатически умных городов, — прокомментировал А. Бакланов. — Хотелось бы, чтобы в эту программу был включен и один из сибирских городов, тем более что северным территориям не всегда подходят решения, предлагаемые для более мягкого климата. Математические модели — это ключевой инструмент исследования, и сибирские ученые могут сказать свое веское слово». Участники обсуждения сначала предложили включить в международную программу Новосибирск, но затем сошлись на Красноярске, который не намного меньше, а проблема чистоты воздуха там стоит объективно острее.

 

Немного Красноярска в Новосибирске

Поветрие по графику

В широком эколого-медицинском контексте нельзя было обойти тему коронавирусной пандемии, тем более что одно из сообщений делала коллега Сергея Кабанихина по институту кандидат физико-математических наук Ольга Игоревна Криворотько. В новосибирских СМИ она выступает с весьма конкретными эпидемическими прогнозами, построенными на разрабатываемой в ИВММГ СО РАН метамодели. Конечно, точность моделирования (и как следствие прогнозирования) зависит от достоверности входящей информации. Но ученые-экспериментаторы знают, что если прибор врёт одинаково, на его показаниях можно строить динамические ряды. И если кроме официальной статистики нет никакой другой, то используют ее.

Ольга Криворотько рассказала, что для задач эпидемиологии применяется несколько типов моделей, ранее опробованных в метеорологии. Основных типов два. Агентное моделирование идет «снизу вверх», от индивида и его атрибутов (пол, возраст, место проживания, состав семьи, мобильность и т.п.) к сообществам. Модели SIR-типа (susceptible, infectious, recovered — восприимчивые, заразные, выздоровевшие) строятся по обратному принципу, «сверху вниз», то есть от популяций к индивидам. Базируясь на некоторых статистических массивах, модели учитывают ряд факторов: например, неизвестности (восстановление отсутствующих данных посредством некоторых алгоритмов) и случайности (когда заражаются затворники и не заболевают социально активные). Обзор зарубежных и российских моделей распространения ковида занял немало времени, а когда докладчица дошла до прогнозов, то для Новосибирской области картина представилась оптимистичной. «По результатам нашего моделирования эпидемия уже идет на спад с учетом плановой вакцинации и соблюдения карантинных мер», — считает О. Криворотько.

 

Распространение ковида в Новосибирске, модель и относительная реальность

Но она же показала график, построенный на модели от другого академического учреждения — ФИЦ «Институт вычислительных технологий». Эта модель предсказывает новый пик заболеваемости новосибирцев в апреле 2021 года с нарастанием ежедневно выявленных случаев со 100 до 160 и с медленным затуханием только к февралю 2022 года. Не удивительно, что ученые стали обсуждать проблему корректности и полноты исходных данных для моделирования. Начальник департамента промышленности, инноваций и предпринимательства мэрии Новосибирска (на день заседания) Александр Николаевич Люлько, математик по специальности, акцентировал внимание на одном из базовых показателей — общей смертности. «У нас работает геоинформационная система “Ритуал”, где регистрируется 100 % захоронений и кремаций, — рассказал чиновник. — За 2020 год прирост общей смертности в городе составил 15,5 % к предыдущему году, впервые за 10 лет население Новосибирска не прибывало, а уменьшалось. Но пик уже пройден, он приходился на прошлый ноябрь». Александр Люлько считает, что на статистику общей смертности влияет два ключевых фактора: собственно ковид и недооказание квалифицированной медицинской помощи страдающим другими, более летальными, заболеваниями.

Схожей точки зрения придерживается академик Михаил Иванович Воевода: «Мы  оперируем понятиями смертности, заболеваемости и так далее, но эти показатели отображают не только ковид, но и его осложнения. Они напрямую зависят от общего состояния системы здравоохранения и требуют стандартизации. К примеру, если в каком-либо регионе проводится массовая диспансеризация населения, то цифры сразу меняются в разы. Поэтому истина в последней инстанции — данные рандомизированных популяционных обследований по известным науке правилам. Это и есть основа для построения самых адекватных моделей». Попутно в ходе обсуждения подвергся сомнению тезис о том, что в условиях пандемии «природа настолько очистилась…» Не очистилась.  Доктор физико-математических наук Александр Самуилович Гинзбург, член экологического консультативного совета при московской мэрии, сообщил, что в марте 2020 года на пике локдауна в столице наблюдался повышенный уровень аэрозольных загрязнений.

 

Александр Люлько и мэр наукограда Кольцово Николай Красников

Доклад академика Николая Александровича Колчанова не касался ковидной пандемии, но тоже базировался на обширных массивах медико-биологической статистики. Речь шла о связи генетического полиморфизма человека и глобальных миграционных процессов. Одним из примеров стала эпидемия (то есть превышение порога в 20% взрослого населения) ожирения в США, которая, по прогнозу ученого, должна случиться и в России «с задержкой лет на 20». Это заболевание в основном вызвано причинами из области метаболической эпигненетики. Проще говоря, при определенном пищевом программировании в организме происходят генетические изменения, передаваемые нескольким поколениям потомков. Последствием может стать не только ожирение. Николай Колчанов рассказал о том, что у коренных африканцев, живших во влажных тропических лесах, дефицит натрия в организме нивелировался заменой одной аминокислоты  на другую. Когда же произошло массовое насильственное переселение негроидов в Северную Америку, то затем, спустя столетия, при изменившемся режиме питания и климатических условиях этот переходящий по наследству механизм повлек повышенные риски развития гипертонической болезни. «Глобальные миграции неизбежно будут приводить к росту дифференцированной смертности и снижению общей приспособляемости населения Земли», — резюмировал академик.

Под занавес

Дискуссия в малом зале Дома ученых затянулась, но, как говорится, не отпускала. Причиной тому была не только широта и актуальность заявленной темы, но и проявившаяся в этот вечер (пятничный, заметим) востребованность именно такого формата научного (и одновременно межнаучного) общения. Кандидат экономических наук Наталья Викторовна Горбачева из Института экономики и организации промышленного производства СО РАН говорила о необходимости участия ее коллег в обсуждении экологических, медицинских и всех остальных проблем. «Многие технологии и достигаемые за их счет эффекты далеко не бесплатны для государства, — заметила Н. Горбачева, — и распространяются в пространстве и обществе весьма неравномерно». Напомнив, что Новосибирская область выбрана одной из семи российских площадок для создания «карбоновых полигонов» для испытания новых технологий поглощения двуокиси углерода из воздуха, экономист подчеркнула важность вовлечения в этот процесс некоммерческих организаций, которые «формируют общественное мнение и модели поведения».

Заместитель председателя СО РАН доктор физико-математических наук Сергей Робертович Сверчков, открывая заседание Клуба межнаучных контактов, вспомнил его историю и предысторию. Еще в 1965 году при знаменитом клубе-кафе «Под интегралом» появился «Кибернетический клуб». Его первым мероприятием стала дискуссия «О перенесении человеческого разума в кибернетическую систему». «По сути, едва ли не впервые в нашей стране, зашла речь о создании искусственного интеллекта, — поделился С. Сверчков, — но такой подход сильно противоречил марксистско-ленинской теории, и первое обсуждение стало последним, клуб разогнали». Формулировка и само сообщество «межнаучных контактов» появляется примерно десятилетием позже. «Этот клуб гремел на всю страну», — вспомнила директор Дома ученых СО РАН Галина Германовна Лозовая. По ее (и не только) мнению, время востребовало восстановить такой формат общения с использованием онлайн-включений. На первом заседании на связь выходили Москва, Париж, Женева, ряд сибирских точек.

«Всё хорошее так или иначе продолжается» — обобщил председатель возрожденного клуба Сергей Кабанихин. Клубная система предполагает некоторые формальности: уже избрано правление, пишется устав, обсуждается программа следующих заседаний. При этом посещать их, задавать вопросы и участвовать в дискуссии может любой, кто прочел этот текст. Или увидел анонс следующей встречи.

Андрей Соболевский

Фото автора, схема из презентации Ольги Криворотько

 

Пандемия как научный эксперимент

  • Не ждали

Обрушившееся на всё земное сообщество нашествие коронавируса и произошедшие в первые три месяца 2020 года глобальные изменения сложившегося образа жизни в ближайшее время станут (и уже стали) центром мировых дискуссий: философских, политических, исторических, экономических и гуманитарных. Мир внезапно стал иным и уже никогда не вернётся к прежнему состоянию с привычными взглядами на материальные и духовные ценности.

По сравнению с большинством европейских стран и США, Россия оказалась психологически лучше подготовленной к пандемии. Возможно, повлияло генетически передающееся потомкам воспитание старшего поколения, заложенное пионерскими лагерями, комсомольским энтузиазмом, партийной дисциплиной и учениями по гражданской обороне. Несомненно, здесь значительную роль сыграли и личные качества президента Владимира Путина, имеющего успешные навыки «точечных решений» и «ручного управления» страной. Что же касается сегодняшней картины мира в целом, то здесь радуют глаз (нет худа без добра) возникающие ростки консолидации и международной взаимопомощи. Конечно, свое слово еще скажет (как минимум должна сказать) ООН — единственный форум, ответственный за устойчивое развитие нашей цивилизации и потому обязанный осознавать опасности возможных новых пандемий, как естественного, так и искусственного (не обязательно целенаправленного) происхождения.

 А ведь кажется, ничто ничего не предвещало. К рубежу 2010—2020 годов развитые и среднеразвитые страны достигли впечатляющего развития и научно-технического прогресса. Переполненные стадионы, концертные залы и фешенебельные отели, модные курорты, рестораны и массовый туризм свидетельствовали об очевидном благоденствии, а образом успешного человека стал активный «квалифицированный потребитель». Ученые постигали сокровенные тайны мироздания: от черных галактических дыр до элементарной частицы, которая должна стать последним кирпичиком в стандартной модели Вселенной. Суперкомпьютерные технологии и искусственный интеллект стимулировали цифровую экономику, роботизацию, интернет вещей и неограниченные контакты. Футурологи обещали в ближайшие десятилетия технологическую сингулярность с бесконечной энергетикой, чудодейственными новыми материалами, с вечной молодостью и почти что бессмертием… И вот в этом царстве эйфории появляется агрессивный коронавирус, который человечество встретило морально неготовым и технически безоружным. Экстравагантный английский премьер Борис Джонсон даже предложил «сдаться» вирусу и всем переболеть. Массовые средства экспресс-диагностики, антисептики и санитарное оборудование, аппараты поддержания жизнедеятельности и спасительные лекарства — где же они? Их отсутствие в количестве, необходимом для обеспечения национальной безопасности, можно объяснить (но не оправдать!) только тем, что Всемирная организация здравоохранения (ВОЗ) и вся медицинская наука, забывшие об исторических уроках, не только не смогли предсказать вспышку вирусной инфекции в 2020 году, но и не предусмотрели риски вызываемых ей драматических событий.

 

  • Богатырская застава

Если же перейти от «кто виноват?» к «что делать?», то здесь открывается необъятное поле для организационной деятельности и научных исследований. От эффективной менеджерской поддержки зависит многое, но самое важное — это «наука управлять наукой», как говорил последний президент Академии наук СССР Гурий Марчук. Здесь главное — стратегическое видение, установка приоритетов и взаимосвязей различных направлений. Генеральная линия — предсказание и обезвреживание новых пандемий — является беспрецедентной по своей сложности. Сравнимая по масштабам проблема стояла перед нашей страной в послевоенные 1950-е годы: обеспечить ядерный и ракетный щит для национальной безопасности в условиях нарастающей внешней угрозы. И эта задача была блестяще решена «тремя великими К»: Игорем Курчатовым (физик), Сергеем Королевым (конструктор) и Мстиславом Келдышем (математик), всесторонне поддержанными всесильным Лаврентием Берия.

Сейчас, безусловно, на главные роли выходят биологические и медицинские исследования в самых разных аспектах: фундаментальных, прикладных и технологических. И они должны стать локомотивом, катализатором для всех остальных научных дисциплин: физики, химии, материаловедения, нанотехнологий и так далее. Разумеется, здесь везде должна первенствовать математика в самом широком смысле этого слова: теоретическая, прикладная и вычислительная, программирование и информационные технологии, искусственный интеллект, распараллеливание алгоритмов и их отображение на архитектуру суперкомпьютеров, экспоненциально растущие мощности которых выводят на главенствующие позиции в моделировании всевозможных процессов и явлений, что многократно усиливает проникновение всех наук в инновационные решения.

Что касается России, уставшей от многолетних чиновничьих преобразований научных, университетских и общеобразовательных школ, то здесь необходимо в первую очередь достичь осознания, что управление наукой по всей цепочке, от проработки стратегий до конкретных организационных решений — это сугубо научная проблема, и решать ее должны ученые, уже почти 300 лет творчески объединенные Российской академией наук, юбилей которой мы собираемся отмечать в 2024 году.

Главная задача текущего момента — это, конечно, спасение людей, сокращение и уничтожение эпидемических очагов, возвращение к нормальной жизни. Однако требуется смотреть в будущее и понимать, что истории болезней, биологические пробы и сопутствующая информация — это бесценный экспериментальный материал, который должен стать достоянием формируемых баз знаний и натурных коллекций, столь необходимых для развития фундаментальной вирусологии. Непременное условие здесь — активное сотрудничество заинтересованных стран, которые должны создать надежную систему коллективной безопасности, наподобие функционирующей международной службы предупреждения о цунами. Разумеется, на научной основе должны создаваться и поддерживаться стратегические запасы фармакологических препаратов и медико-санитарного оборудования (наподобие того, как хранятся в мирное время склады армейского вооружения и стратегических запасов).

Давайте будем оптимистами. Российский народ успешно выдержит карантин (что означает по-французски и по-итальянски «сорок дней»), вынесет принудительную «самоизоляцию» и другие ограничения. Начнется возврат к созидательной жизни, но по-новому. Придется какое-то время реанимировать экономику, в значительной степени за счет Фонда национального благосостояния, предусмотрительно накопленного нашими финансистами в предыдущие годы.  Но теперь посмотрим вперед и вспомним нашу главную цель — обеспечить в 2024 году технологический прорыв и войти в пятерку передовых стран. В Национальном проекте «Наука» прописаны цифровая экономика, робототехника, искусственный интеллект и исчерпывающий список приоритетных направлений исследований, а также предусмотрены комфортные условия работы для российских и зарубежных ученых. Неизбежно, в силу форс-мажорных обстоятельств, будут откорректированы сроки, но стратегические цели останутся. Вот тут-то и возникнут вопросы, которые фактически давно назрели («гладко было на бумаге, но…»). Дело в том, что российскую науку уже много лет тоже поражает вирус, сначала извне, а теперь проникает и вовнутрь. Персонального имени у него нет, это безликий враг, в совокупности представляющий катастрофически растущую армию чиновников, каждый из которых выполняет чьи-то указания, но к науке отношения не имеет и ни за что не отвечает. Здесь напрашивается аналогия с компьютерным вирусом, который внедряется через сеть, забирает ресурсы и выводит программную инфраструктуру из строя.

 

  • Играющие мальчики

Популяция чиновников чрезвычайно консолидирована и агрессивна. Они активно вводят важные должности, раздувают штаты делопроизводителей,  повышают себе зарплаты, а в оправдание придумывают массу бюрократических занятий и наукометрических мероприятий: рейтинги, показатели публикационной активности и результативности научной деятельности, аттестации и градации институтов, бесконечные инструкции с приказами и отчеты, отчеты, отчеты… Основной массе ученых очевидно, что это бумаготворчество является не только бесполезным, но и вредительским. Хотя бы потому, что к руководству наукой такая деятельность никакого отношения не имеет. Более того, исторически сложившаяся стройная система управления «Президиум Академии — Отделения (отраслевые и макрорегиональные) — Объединенные ученые советы (ОУС) — академические институты» разрушена, а новая не создана. Штаба российской науки на сегодня нет, и регламентирование жизни институтов министерскими чиновниками — это нонсенс.

Удивительно, но это всё происходит при том обстоятельстве, что еще 30 лет назад наша Академия могла гордиться не только фундаментальными результатами, оборонными заказами, физическими мегаустановками и отечественными параллельными суперкомпьютерами, но и созданием уникального Сибирского отделения АН с крепкими опорными центрами в девяти регионах от Тюмени до Якутска, а также Дальневосточного и Уральского отделений АН СССР, при огромном международном и внутреннем авторитете наших ученых и их достижений в стране.

Поначалу вирус антинауки олицетворялся Федеральным агентством научных организаций (ФАНО). После бесславного и безрезультатного четырехлетнего существования оно было ликвидировано, но не уничтожено, поскольку внедрилось в новое Министерство науки и высшего образования, и картина принципиально не изменилась. У Академии отобрали программу фундаментальных исследований, и теперь в России таковой не существует. Фонды РФФИ и РНФ с их краткосрочными грантами ее никак не заменят, а Нацпроект «Наука» — это просто декларация о намерениях, но никак не организующая структура.

Позорным детищем ФАНО была кампания «по выполнению Указа Президента» о повышении зарплаты ученых до 200% от средней по региону. Здесь бюрократы с искусством наперсточников рапортовали о выполнении директивы, не истратив на повышение ни рубля. Научных сотрудников заставляли «добровольно-принудительно» переходить на долю ставки (например, на 0,5) с обещанием выплаты компенсации. В итоге человек получал денег столько же, но формально его зарплата (в расчете на целую ставку) значительно увеличивалась. Сделано это было хитро, без министерского распоряжения, за которое потом пришлось бы отвечать. Поразительно, что эта махинация до сих пор не разоблачена, хотя данные факты общеизвестны. Результатом оказалось резкое сокращение официальной численности ученых в институтах и по России в целом, о чем потом докладывала (как об опасной тенденции) на заседании правительства Татьяна Голикова. Будем надеяться, что новое руководство Минобрнауки и правительства страны в целом осознают губительность такого подход к науке.

 

  • Супрематический квадрат

 Что касается насущных научных вызовов, то здесь, очевидно, мировое сообщество поднимет на новый фундаментальный уровень вирусологию и эпидемиологию. Удивительно, что это не было сделано раньше, при общем активном развитии биологических и медицинских наук в последние десятилетия (гром не грянет — мужик не перекрестится). Проблема перед учеными стоит глобальная — создать гибкий биологический щит перед будущими эпидемиями. В этом мегапроекте есть место и химикам, и физикам, и материаловедам, и приборостроителям, и многим другим. Снова выскажусь о роли математики, опять же в самом широком смысле — в эпоху суперкомпьютеров, больших данных и машинного обучения реализующей свою гуманитарную миссию через предсказательное моделирование и системы принятия решений, которые ориентированы на проблемы, немыслимые еще десять лет назад. Известно, что уровень прогресса в любой отрасли зависит от степени ее математизации, и даже прошлый XX век дает тому немало примеров.

Подчеркну, что ключевая роль в будущих успехах принадлежит программному обеспечению нового поколения, которое через одушевленное компьютерное «железо» насытит все науки и технологии синергетикой знаний, наподобие кровеносной или лимфатической системам. И для этого в России необходимо создать индустрию наукоемкого программирования, благо мы еще имеем здесь научно-образовательные школы. Недаром Санкт-Петербургский университет ИТМО регулярно выигрывает мировые чемпионаты по программированию, не случайно Владимир Путин противопоставляет американскому миллиардеру-инноватору Илону Маску  не кого-нибудь, а программиста Евгения Касперского, мирового лидера по информационной безопасности. Огромный международный авторитет имеет новосибирская школа по вычислительно-информационным технологиям, заложенная академиками Андреем Ершовым, Гурием Марчуком и Николаем Яненко. Неспроста здесь, в Академгородке, открывают филиалы такие суперкомпьютерные гиганты, как Intel и Huawei. И тот факт, что в транснациональных компаниях MicroSoft, Google и многих других работает огромное количество русских специалистов, только подтверждает истину: «Если страна не может прокормить свою науку, она будет кормить чужую».

У нас далеко не все в управленческих структурах понимают, что  проблема стоит очень остро, и без ее решения не будет ни российского технологического прорыва, ни вхождения в когорту передовых держав, ни внутреннего социального прогресса. При этом добавлю, что мировой           программный рынок бурно растет и уже сопоставим с нефтяным по объему продаж (особенно в условиях сегодняшнего падения цен на энергоносители). Российские таланты могут на этом направлении внести  достойный вклад в ВВП страны, надо только им помочь.

Да, в рамках Сибирского отделения РАН предпринимаются усилия по развитию математического и супервычислительного направлений: организован международный математический центр на базе Института математики им. С.Л. Соболева и НГУ, продвигается проект Сибирского национального центра высокопроизводительных вычислений, обработки и хранения данных (СНЦ ВВОД), Институт вычислительных технологий СО РАН недавно получил статус Федерального исследовательского центра. В условиях коронавирусной пандемии Сибирское отделение РАН смело экспериментирует с новыми форматами мобилизации научных и технологических компетенций. Уже работают межведомственная рабочая группа (МРГ) по борьбе с островирусными инфекциями и Центр компетенций «Антивирус», с этой же целью заключено тройственное соглашение  СО РАН, МГУ и «Вектора».

Ученые кооперируются и «по горизонтали»: по инициативе академика Искандера Тайманова начал работу еженедельный международный онлайн-семинар, объединивший, прежде всего, математиков и специалистов в IT-области. Об этом начинании недавно рассказал мой коллега член-корреспондент РАН Сергей Кабанихин. Но локальные прорывы не отменяют резко нарастающей потребности в изменении научной политики на национальном уровне, а для начала — ее обоснованного формирования с привлечением академического сообщества.

Как известно, кадры решают всё. На повестке дня — и принципы подготовки современных ученых, и поднятие общего престижа и востребованности науки в стране. Одна из болезненных российских проблем — отток молодых талантов за рубеж и потребность, наоборот, начать возвращать на Родину нашу научную диаспору, которая представляет огромный интеллектуальный потенциал. Рецепты для этого общеизвестны, нужно только принять необходимые решения по развитию творческого и социального роста ученых. Здесь и поддержка представительного участия в зарубежных конференциях с регулярным международным сотрудничеством, и обеспечение свободного доступа к научной иностранной литературе, и организация академической мобильности молодежи, и широкие обмены студентами, аспирантами и стажерами. Очень важно сейчас активно привлекать зарубежных специалистов, о чем убедительно свидетельствует исторический опыт России (достаточно вспомнить великого Леонарда Эйлера, имя которого носит Математический институт в Петербурге).

От осуществляемых в этом направлении первых пробных шагов необходимо переходить к широкой практике, чтобы восполнить урон, который понесла наша наука за последние три десятилетия. Надо пытливо искать новые формы вовлечения ведущих иностранных ученых в наш научно-образовательный процесс. Необходимо восстановить традиционные и создавать новые перспективные контакты российских академических и университетских школ со странами ближнего зарубежья: они (за исключением Прибалтики) до сих пор традиционно ориентированы на Россию.

Конечно, в данном вопросе большое будущее за технологиями удаленного делового и творческого взаимодействия, а также дистанционного обучения. За последние недели в мире эти практики вынужденно актуализировались, но по большому счету они давно назрели и во многих странах активно продвигались. Безусловно, скоро мы увидим и неожиданные технические решения, и научно-организационные методологии, и новые когнитивно-психологические подходы, которые разительно изменят формы человеческих коммуникаций (как это когда-то сделали интернет и смартфон).

Главное последствие пандемии, с которой надо бороться современными научными методами — это кризис мировой и национальных экономик. Уже давно идут международные конгрессы по устойчивому развитию, но протекают они в основном в политико-энергетической плоскости, а теперь, по-видимому, настает время формирования госзаказов для национальных научных школ и транснациональных коллабораций по созданию глобальных и региональных экономико-математических моделей, в которых должны быть заложены и производственно-рыночные отношения, и социальные, и демографические, и природно-климатические, и другие возможные и невозможные, казалось бы, обстоятельства. Сопутствующих научных сверхзадач несть числа, и надо лишь мобилизоваться на их постановку и реализацию. Конечно, помимо креативности и широкого системного взгляда на стоящие междисциплинарные проблемы, здесь требуется вера в конечный успех и «длинная воля» для его достижения.

Человечество — большая семья, это подтвердят космонавты, видевшие нашу Землю из иллюминатора. Но, как говорится, в семье не без урода, и извечная борьба добра со злом отнюдь не отошла в отдаленное прошлое, эта полярность вовсе не размылась — скорее обострилась. Поэтому облик нашего будущего определяется не в последнюю очередь гуманитарными факторами. Как мы сможем осуществить симбиоз массы противоречий: межгосударственных, классовых, национальных, религиозных, политических и так далее — от этого зависит завтрашняя картина мира, определяемого как период четвертого индустриального уклада. Здесь ждут ответа свои глобальные вызовы, но уже в других науках и  смыслах — философии, социологии, этики и морали. Успехи или провалы в поисках глобальных стратегий развития пути определят, придем мы гармонии или к антиутопии.

Фото Юлии Поздняковой («Наука в Сибири»), Михаила Тумайкина и из открытых источников

 

 

 

Наступление лета может усугубить ситуацию с коронавирусом

В минувшую пятницу состоялось заседание МРГ, в начале которого участники рассмотрели новые препараты и технологии, способные обеспечить лечение коронавирусной инфекции или снижение ее вирулентности и патогенности. Вторая часть была посвящена комплексному прогнозному многофакторному моделированию всех аспектов и последствий пандемии.

Сложность и точность моделей распространения заболевания растет: учитываются такие параметры, как количество привитых от туберкулеза, климатические особенности разных регионов и многое другое. Так, компьютерная модель Института вычислительной математики и математической геофизики СО РАН учитывает пассажиропотоки между городами страны, а также введенные федеральными и региональными властями ограничительные меры, она быть перенастроена под разные субъекты РФ. Параллельно в Санкт-Петербурге ученые также разработали математическую модель и считают разные варианты сценариев развития коронавирусной инфекции с учетом особенностей своего региона. Об этом сообщил проректор по перспективным проектам и руководитель Центра национальной технологической инициативы «Новые производственные технологии» Санкт-Петербургского политехнического университета кандидат технических наук Алексей Иванович Боровков.

Модели строятся на основании уже известных и в той или иной степени подтвержденных закономерностей, однако в развитие реальной ситуации постоянно вмешиваются ранее не учтенные факторы. Об этом в своем комментарии к докладам, касающимся создания единой платформы для многофакторного анализа сценариев и прогнозов по развитию ситуации вокруг коронавирусной инфекции, сообщил первый заместитель директора Института вычислительных технологий  СО РАН кандидат физико-математических наук Андрей Васильевич Юрченко: «Мы обладаем опытом математического и сценарного моделирования, которое включает и множество ранее созданных моделей такого типа, и поиск новых рисков с оценкой степени и глубины их влияния на ситуацию, — отметил ученый. — В ИВТ СО РАН уже работает единая платформа для построения таких прогнозов. На наш взгляд, ближайшей очень серьезной угрозой станет наложение экологических проблем отдельных регионов и последствий начавших свое распространение лесных пожаров на ситуацию с пандемией. Известно, что смог (в том числе дым от возгораний), качество воздуха напрямую влияют на органы дыхания, усугубляя любую легочную патологию. Кроме того, смог снижает инсоляцию и проникновение ультрафиолета, естественных факторов, снижающих вирулентность COVID-19. Наконец, само по себе наличие в воздухе большого количества частиц пыли является усугубляющим фактором — она является естественным переносчиком вируса на далекие расстояния. Поскольку такие частицы сохраняют свою вирусную активность до пяти суток, повышаются миграционные возможности вируса в отрыве от живых носителей. Предположу, что это далеко не всё, что нам предстоит учесть».

 

Андрей Юрченко

Для оперативного принятия локализованных управленческих решений, адекватных местным условиям и задачам, необходимо взаимодействие штабов, экспертных групп и аналитических центров. Важно использование инструментов поддержки принятия решений, работающих с реальными данными и имеющих возможность моделировать последствия. В докладе заместителя главного ученого секретаря Сибирского отделения РАН кандидата технических наук Юрия Александровича Аникина прозвучала необходимость создать комплексную модель различных процессов при пандемии — биологических, экономических и социальных. Это позволит при принятии решений оценивать различные факторы: структуру региональной экономики, производственные цепочки, логистику, зависимость от импорта и экспорта, доставку фармпрепаратов и медицинских изделий. «Любые меры имеют свои косвенные и пока не очевидные результаты. Так, например, массовое применение различных антисептиков ускоряет появление резистентных бактериальных инфекций. А жесткие карантинные меры повышают риск того, что следующий штамм вируса появится до момента получения массового иммунитета к текущему, и станет возможным двойное заражение. Введение жестких ограничений в отдельном городе может осложнить работу предприятия, критически участвующего в производственных цепочках других регионов. Значимый ущерб сейчас могут нанести недифференцированные решения», — пояснил эксперт.

 

Юрий Аникин

На основе моделирования можно принимать локализованные решения о степени изоляции, мерах поддержки, экономических ограничениях, потребностях в различных сферах, — подчеркивалось на заседании МРГ.  За каждой такой моделью, кроме математиков, должны стоять опытные специалисты-практики в конкретной отрасли. Такую междисциплинарность возможно реализовать в рамках межведомственного взаимодействия, инициированного СО РАН, и с привлечением нескольких институтов Новосибирского научного центра.

Ольга Дорохова,

ответственный секретарь МРГ при СО РАН

 

В Сибири может вырасти сетевой «Менделеев»

Председатель Сибирского отделения РАН академик Валентин Николаевич Пармон информировал коллег о ходе реализации двух стратегических программ — «Академгородок 2.0» и Плана комплексного развития (ПКР) СО РАН, ориентированного на весь Сибирский макрорегион. Обе начали осуществляться в условиях отсутствия централизованного бюджетного финансирования — в отличие от предшествовавших государственных постановлений о развитии науки в Сибири. «У нас каждый отдельный проект идет по долгой цепочке бюрократических согласований», — подчеркнул глава СО РАН.

Заместитель председателя СО РАН доктор физико-математических наук Сергей Валерьевич Головин более подробно остановился на цели, задачах и механизмах реализации ПКР СО РАН. По мнению ученого, отдельные проекты этого плана должны вписываться в рождающиеся новые форматы организации интеллектуальной деятельности: научно-образовательные центры (среди которых уже образованные в Тюмени и Кемерове), комплексные научно-технические программы полного инновационного цикла (КНТП), территории с высокой концентрацией науки и разработок — такие, как Томск и новосибирский Академгородок. Особое внимание ученый уделил сетевым инициативам, которые могут носить межведомственный и межотраслевой характер, служить эффективным инструментом интеграции науки и высшей школы. «В частности, мы можем вместе создать единую платформу лекционных курсов для дистанционного обучения, а в перспективе — формировать единое образовательное пространство Сибири», — предложил Сергей Головин.

Председатель Совета ректоров ВУЗов Новосибирской области доктор технических наук профессор Николай Васильевич Пустовой предложил активизировать работу этого органа как мозгового центра и координатора совместных действий академических институтов и вузов, ректор Новосибирского государственного архитектурно-строительного университета (Сибстрина) доктор технических наук Леонид Юрьевич Сколубович — включить в орбиту сотрудничества Региональный научно-образовательный центр Российской академии архитектуры и строительных наук (РААС). Директор Института вычислительной математики и математической геофизики СО РАН доктор физико-математических наук Михаил Александрович Марченко рассказал о перспективах высокопроизводительных вычислений в совместных проектах академической и вузовской науки, а также планируемом открытии кафедры математического моделирования и суперкомпьютерных вычислений на факультете информатики и вычислительной техники Сибирского государственного университета телекоммуникаций и информатики (СибГУТИ).

Академик Валентин Пармон напомнил об инициативе «Вернадский» Московского государственного университета им. М. В. Ломоносова, призванной распространить компетенции МГУ на региональные вузы. «На этом фоне единое образовательное пространство Сибири — вполне реализуемая идея, — поделился председатель СО РАН, — Чтобы начать работу по его формированию, нужно во взаимодействии с коллегами из Томска и других городов подготовить необходимые документы». Единый научно-образовательный консорциум Сибирского макрорегиона председатель СО РАН предложил назвать «Менделеев»: «Это самый известный в мире ученый России, сибиряк, уроженец Тобольска, к тому же сделавший очень многое для университетов нашей страны».

На заседании состоялось подписание соглашений между СО РАН и Советом ректоров вузов Новосибирска, а также с Сибирского отделения с Сибстрином и СибГУТИ.

Наука в Сибири

Фото Андрея Соболевского

Сибирские ученые развивают проект СНЦ ВВОД

«СНЦ ВВОД — это флагманский, очень важный, интегрирующий, объединяющий новые направления “Академгородка 2.0” проект, — отметил министр науки и инновационной политики Новосибирской области кандидат физико-математических наук Алексей Владимирович Васильев. — Он развивается довольно динамично и по части поиска и проработки технических, инженерных решений, которые будут использоваться при создании этого центра, и в плане формирования перспективных команд и коллективов».

 



Алексей Васильев

Министр отметил основные этапы 2019 года, пройденные СНЦ ВВОД: формирование команды, подготовку молодых исследователей, а самое главное — создание исследовательской программы, которая будет реализовываться на вычислительном комплексе, и как следствие — формулировку и уточнение технических и инженерных требований.

«Есть много задач в области обработки данных и в научных исследованиях, которые требуют запланированных нами мощностей», — прокомментировал руководитель координационного совета проекта СНЦ ВВОД, ректор Новосибирского государственного университета академик Михаил Петрович Федорук. Напомним, к 2022 году предполагается достигнуть мощности по крайней мере в 10 петафлопс, объема системы хранения данных — минимум 150 петабайт.  «У нас есть четкий план, который состоит из многих этапов, в частности необходимо проработать вопросы о земельном участке, проектную документацию на строительство здания и так далее. Подчеркну — это один из базовых проектов программы “Академгородок 2.0”, потому что центр обработки данных и вычислений нужен всем институтам и всем остальным проектам», — сказал Михаил Федорук.

 



Михаил Федорук

Заместитель руководителя координационного совета проекта СНЦ ВВОД, директор Института вычислительной математики и математической геофизики СО РАН доктор физико-математических наук Михаил Александрович Марченко также сообщил, что в 2019 году достигнута договоренность с будущими ключевыми пользователями центра о проведении суперкомпьютерных вычислений и хранении данных в едином пространстве СНЦ ВВОД.

 



Андрей Юрченко

«Мы завершили то, что можно назвать концептуальным проектом — то есть сформировали основополагающий пакет документов, в частности готовы документы для подачи в федеральную адресную инвестиционную программу, — сказал заместитель руководителя координационного совета проекта СНЦ ВВОД, первый заместитель директора Института вычислительных технологий СО РАН кандидат физико-математических наук Андрей Васильевич Юрченко. — Сейчас у нас есть вся документация, чтобы продвигать этот проект в целях поиска поддержки».

«Наука в Сибири»
Фото ИВТ СО РАН (анонс) и Андрея Соболевского