Прототип детектора для СКИФ испытан на коллайдере ИЯФ

«Мы создали прототип интегрирующего детектора, предназначенного для изучения быстропротекающих процессов, который будет установлен на пользовательской станции Центра коллективного пользования «СКИФ». Прототип маленький, но он позволяет отработать технологии, необходимые для настоящего детектора, в частности, проверить электронику. Это называется макетирование режима работы, который следует после моделирования, то есть компьютерного расчета. Макетирование подразумевает реальный эксперимент», — прокомментировал главный научный сотрудник ИЯФ СО РАН доктор физико-математических наук Лев Исаевич Шехтман.

Отличие прототипа и реального детектора — в размере и апертуре. «У прототипа 96 каналов и апертура 5 мм, а в реальном детекторе будет 2048 каналов и апертура 10 см. Апертура влияет на размер изображения объекта. Пять миллиметров — это очень маленький размер, который не представляет интереса для пользователя, но для нас представляет, потому что позволяет отработать технологии и перейти от научно-исследовательских работ к опытно-конструкторским», — отметил Лев Шехтман.

Помимо экспериментов по физике высоких энергий, на коллайдере ВЭПП-4М проводятся исследования с синхротронным излучением. Для этих работ обычно используется режим, при котором в накопителе циркулируют два сгустка электронов с интервалом 610 наносекунд (одна миллиардная секунды). Как отметил заведующий сектором ИЯФ СО РАН кандидат физико-математических наук Павел Алексеевич Пиминов, с появлением новых детекторов для изучения быстропротекающих процессов стал использоваться режим с шестью сгустками электронов с интервалом около 200 наносекунд.

По словам Павла Пиминова, в источнике СИ СКИФ изначально был заложен режим накопления полного числа сгустков — 567 через 2.8 наносекунды. «Такой подход обусловлен необходимостью увеличить время жизни пучка и уменьшить потери частиц, что определяет радиационный фон вблизи установки. Для этого уменьшается заряд одного сгустка и увеличивается число сгустков, а полный ток пучка остается неизменным. Но для проведения быстропротекающих экспериментов с временным разрешением необходим высокий заряд в одном сгустке, а их число определяется быстродействием детектора. Поэтому на ЦКП СКИФ предполагается реализация специального режима — 30 сгустков через 50 наносекунд», — объяснил он.

Источник синхротронного излучения СКИФ запланирован как уникальная установка с уникальными параметрами. Поэтому проведение испытаний отдельных элементов иногда становится самостоятельным научно-техническим вызовом, поскольку необходимых для этого условий пока не существует — но воссоздать похожие можно на действующей инфраструктуре ИЯФ СО РАН.

 

По материалам пресс-службы ИЯФ СО РАН

Метод БНЗТ из Академгородка ликвидировал раковые опухоли у кошек и собак

Бор-нейтронозахватная терапия (БНЗТ) — методика избирательного уничтожения клеток злокачественных опухолей путем накопления в них изотопа бор-10 и последующего облучения пучком нейтронов. При взаимодействии бора и нейтрона происходит ядерная реакция, в которой рождаются частицы с высокой энергией (альфа-частица и атомное ядро лития). Они перемещаются на короткие расстояния (5-9 мкм, что сопоставимо с диаметром клетки млекопитающего) и наносят смертельные повреждения опухолевым клеткам, не затрагивая при этом здоровые.

В рамках эксперимента было пролечено 15 кошек и собак со злокачественными опухолями. Эксперимент проводился in vivo, то есть непосредственно на организмах. Отбором, подготовкой и клиническим сопровождением животных занималась Лаборатория ядерной и инновационной медицины НГУ в тесном взаимодействии со специалистами ветеринарных клиник. Генерацию нейтронного пучка нужных параметров на установке обеспечивал ИЯФ СО РАН. Процедура облучения продолжалась в среднем два часа. Незадолго до начала облучения кошкам и собакам вводили препарат адресной доставки бора, затем их погружали в медикаментозный сон и фиксировали под ускорителем. Во время облучения проводился мониторинговый контроль основных физиологических параметров животных. Весь период после лечения животных протекал под постоянным наблюдением сотрудников лаборатории и ветеринарных врачей. Динамика опухолей и параметры общего состояния подопечных верифицировались томографически и при повторных лабораторных анализах.

«Эксперимент является одним из значимых результатов длительной совместной работы НГУ и ИЯФ по отработке методики БНЗТ. За 50-летнюю историю методики по всему миру было проведено достаточно много экспериментов, но до сих пор в публикациях не отмечалось исследований на крупных млекопитающих с использованием ускорительных источников нейтронов. В этом отношении мы являемся абсолютными лидерами. Можно констатировать, что эффект БНЗТ получен не только на клеточных культурах и лабораторных мышах, но и на крупных млекопитающих — кошках и собаках, а в дальнейшем, возможно, на кроликах и свиньях. В широком смысле это обязательный этап внедрения БНЗТ-технологий в медицинскую практику», — прокомментировал автор исследования, заведующий Лабораторией ядерной и инновационной медицины физического факультета НГУ кандидат медицинских наук Владимир Каныгин.

Ученый отметил, что эксперимент включал только животных со спонтанными опухолями (а не привитыми, как у лабораторных мышей). У кошек и собак, как правило, развиваются сходные виды рака в тех же органах, что и у людей. Кроме того, биологические и терапевтические реакции на опухоли у домашних животных являются лучшими моделями реакций тканей человека, чем тела мелких грызунов. Таким образом, исследование является ключевым в тестировании технологий БНЗТ перед клиническим этапом.

«Это действительно важный результат. Мы своими глазами увидели, что методика работает. Мы изготовили источник нейтронов и получаем на нем пучок, качество которого позволяет лечить собак и кошек со злокачественными опухолями, что и было продемонстрировано. Это дорогого стоит», — сказал соавтор исследования, главный научный сотрудник ИЯФ СО РАН доктор физико-математических наук Сергей Таскаев.

Ученые утверждают, что задачу создания нейтронного источника, пригодного для терапии, они решили, и сейчас максимум, что они могут сделать — проводить систематическое лечение животных. «До нас лучевого воздействия на опухоли у собак и кошек никто в регионе не проводил. Мы пионеры в этой области, по крайней мере, за Уралом. Нам поступает масса запросов на предмет оказания такого рода помощи, таков неожиданный “побочный эффект” эксперимента. Думаю, это направление будет развиваться в ближайшем будущем», — выразил мнение Владимир Каныгин.

В России запущена государственная программа по переводу ускорительного источника нейтронов, построенного в ИЯФ СО РАН, в клиническую фазу. В 2023-2024 годах специалисты института изготовят и поставят источник в ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Блохина» для проведения доклинических и клинических испытаний БНЗТ. «Мы продолжим исследования, чтобы поделиться с московскими коллегами новыми наработками. Конечным итогом совместной работы НГУ и ИЯФ станет усовершенствование разных аспектов основной технологии БНЗТ на ее доклиническом этапе. Речь идет о создании определенной группы направлений доставки борсодержащих препаратов. Не исключено, что мы перейдем на другие носители или на другие варианты нейтронозахватной терапии. Возможности этой уникальной установки будут использованы по максимуму», — подчеркнул Владимир Каныгин.

По материалам пресс-службы ИЯФ СО РАН, фото Андрея Соболевского

 

Глава СО РАН рассказал о реализации программы «Академгородок 2.0»

Особое внимание уделялось выполнению программы развития Новосибирского научного центра СО РАН, в котором сосредоточено свыше 60% академического потенциала Сибирского макрорегиона. В свою очередь, в рамках формируемого «Академгородка 2.0» был выделен крупнейший флагманский проект ― источник синхротронного излучения СКИФ. «Честно говоря, его строительство началось на три года позже запланированного, но теперь идет полным ходом», ― констатировал В.Н. Пармон. Он выразил надежду, что западные экономические и технологические санкции не окажут сильного влияния на реализацию этого мегапроекта, суммарная стоимость которого обозначена в 43, 883 миллиарда рублей. «Можно ожидать, что на рабочих станциях СКИФа будут проведены работы, затем удостоенные Нобелевской премии», ― предположил председатель СО РАН.

В числе других реализуемых элементов «Академгородка 2.0» Валентин Пармон назвал вхождение ФИЦ «Институт цитологии и генетики СО РАН» и ГНЦ ВБ «Вектор» в два независимых научных центра мирового уровня, создание такого же центра математического профиля на базе Новосибирского государственного университета и Института математики им. С.Л. Соболева СО РАН и начало работ по проектам бор-нейтронозахватной терапии (БНЗТ) и супер С-тау фабрики с их частичной релокацией, соответственно, в Санкт-Петербург и Саров (Нижегородская область). Касаясь инфраструктурной части программы развития ННЦ, председатель СО РАН выделил «ускоренную реновацию» кампуса НГУ, завершение строительства гимназий №3 в Академгородке и «Технополис» в Кольцово, разработку градостроительной концепции и мастер-плана нового района с рабочим названием Смарт Сити.

Академик В.Н. Пармон рассказал также о состоянии дел с другим крупнейшим проектом СО РАН ― Национальным гелиогеофизическим комплексом в Прибайкалье. «Это распределенная группа установок класса мегасайнс, ― отметил Валентин Николаевич. ― Комплекс оптических инструментов построен и сдан, радиогелиограф находится в стадии активного строительства, по крупному солнечному телескопу-коронографу получено положительное заключение Главгосэкспертизы». Руководитель СО РАН назвал главным условием успешной реализации программы «Академгородок 2.0» и других крупнейших проектов сотрудничество с Минобрнауки, президиумом РАН, руководством субъектов Федерации и индустриальными партнерами. При этом Валентин Пармон обозначил важнейшую задачу Сибирского отделения в целом на ближайшую перспективу: «В условиях жесточайшей блокады обеспечить координацию взаимодействия научных и научно-образовательных организаций Сибири с российской промышленностью для обеспечения реальной импортонезависимости нашей страны».

«Наука в Сибири», фото Юлии Поздняковой

Началась сборка сегментов для бустерного синхротрона ЦКП СКИФ

Ускорительный комплекс СКИФ будет состоять из линейного ускорителя, который должен производить электронный пучок с энергией 200 МэВ. Потом идет бустерный синхротрон с периметром 158 метров. Он за полсекунды должен ускорить пучок, летящий из линейного ускорителя, до энергии три миллиарда электронвольт (3 ГэВ). Этот пучок запускается в основной накопитель, откуда излучение поступает уже на пользовательские станции.

«Бустерный синхротрон состоит из нескольких сотен различных компонентов — это и магниты, и вакуумная камера, и насосы, и датчики положения пучка и так далее. Все они должны быть выстроены по отношению к пучку с высочайшей точностью (до толщины человеческого волоса). Неудобно делать это в тоннеле. Поэтому оборудование собирается на специальных подставках — гирдерах, настраивается с помощью лазерных трекеров, фиксируется, а потом весь этот сегмент как целое переводится в тоннель и там с другими сегментами собирается как конструктор», — рассказывает директор ЦКП СКИФ, заместитель директора ИЯФ СО РАН доктор физико-математических наук Евгений Борисович Левичев.

 

На стройплощадке СКИФ

Гирдеры по заказу ИЯФ СО РАН производит АО «Воткинский завод» (Удмуртия). Для бустерного синхротрона необходимо 43 гирдера. Ученые уже получили 13 из них. Остальные будут поставлены в институт партиями до сентября 2022 года. Самый первый сегмент бустера собран. Планируется, что остальные будут готовы уже к концу 2022 года. Параллельно начато производство самого накопителя. Это последняя ступень — кольцевой ускоритель длиной почти полкилометра. Создаются первые прототипы вакуумных камер, изготавливаются резонаторы, системы диагностики и управления.

Как утверждают ученые, изготовление синхротрона идет согласно срокам и не должно подвергнуться угрозам из-за санкций. «Проблемы есть, но они не критические. Во-первых, весь проект на 85—90 % был ориентирован внутрь страны, то есть на всё российское. Во-вторых, основную часть иностранных компонентов мы успели закупить. Самая большая проблема сейчас связана с коронавирусом — в Китае зависли трубы из нержавеющей стали. Они лежат на складе, готовые, купленные, и ждут того момента, когда границы откроются. Как только это произойдет, трубы придут сюда, и из них будут делаться системы управления, — говорит Евгений Левичев. — Продукцию европейских поставщиков можно заменить. Дело в том, что часть оборудования, которое предполагалось закупить в Европе, была выбрана не потому, что мы не можем такое сделать, а для того, чтобы распараллелить, ускорить процесс, уложиться в сжатые сроки». 

Так, в лабораториях ИЯФ уже начал разрабатываться источник питания для СКИФ (изначально его собирались приобрести в Европе). На изготовление некоторых компонентов ЦКП СКИФ переориентируются российские предприятия. 

«Медные шины производили в Австрии и Финляндии. Заключенные контракты они выполняют, от новых отказались. Сейчас во Владикавказе восстанавливают завод “Кристалл”, в апреле они запустили вакуумную печь для отливки меди, и мы надеемся, что в течение года освоят изготовление такой шины. В Германии закупалась электротехническая сталь с клеевым покрытием, сейчас мы переходим на российскую», — рассказывает помощник директора ИЯФ СО РАН по реализации проекта ЦКП СКИФ Сергей Михайлович Гуров.

«Наука в Сибири»

Фото Глеба Сегеды (анонс), Александры Малыгиной

Первый электронный пучок на СКИФе планируют получить уже в 2022 году

«Реализация проекта идет в соответствии с графиком, пройдена точка невозврата. С созданием СКИФ мы получим уникальный проект научной установки класса “мегасайенс”. В рамках программы развития “Академгородок 2.0” СКИФ является флагманским проектом, входящим по научной значимости в тройку ведущих проектов РФ и мира. Развитие СКИФ задаст вектор комплексного инфраструктурного развития “Академгородка 2.0”, в который входит 83 объекта, из них 15 связаны со СКИФ. Это объекты спорта, образования, медицины, благоустройства, а также три объекта транспортной инфраструктуры», — прокомментировала заместитель губернатора Новосибирской области Ирина Викторовна Мануйлова.

Управляющий проектом ЦКП СКИФ Иван Иванович Шмидт подчеркнул, что участок под объекты СКИФ определен, разрешение на строительство получено. Директор ФИЦ «Институт катализа имени Г. К. Борескова СО РАН» академик Валерий Иванович Бухтияров и директор ЦКП СКИФ доктор физико-математических наук Евгений Борисович Левичев отметили, что в конце текущего года появятся первые здания СКИФ, и они сразу начнут наполняться высокотехнологичным оборудованием. Планируется, что к концу июня 2022 года будет собрана первая небольшая часть ускорительного комплекса СКИФ — электронная пушка, а также часть линейного ускорителя. В специальном радиационно защищенном зале Института ядерной физики им. Г. И. Будкера СО РАН ученые с помощью этого оборудования рассчитывают получить первый электронный пучок проекта СКИФ. Энергия пока будет небольшой — всего 20 МэВ, это необходимо для тестирования. Когда СКИФ будет построен, энергия будет в 150 раз больше — 3 ГэВ.

По материалам пресс-службы губернатора и правительства Новосибирской области

 

Общее собрание СО РАН: главное про Академгородок 2.0

ЦКП СКИФ отнесен главой СО РАН одновременно к двум стратегиям развития: кроме «Академгородка 2.0» также и к Плану комплексного развития, распространяющемуся на весь Сибирский макрорегион — вместе с другим объектом класса mega science, Национальным гелиогеофизическим комплексом РАН в Прибайкалье. «Это созвездие уникальных научных инструментов, нацеленное на  ликвидацию отставания отечественной науки в области физики солнечно-земных связей с выходом на траекторию опережающего развития в фундаментальных исследованиях и решении крупных прикладных проблем, — подчеркнул председатель СО РАН. — Затраты здесь намного крупнее, чем на СКИФ».

В контексте Академгородка 2.0 глава СО РАН выделил однозначные приоритеты. Кроме ЦКП СКИФ, это комплексное развитие Новосибирского государственного университета (включая физико-математическую школу) и реконструкция его кампуса, городок инновационной молодежи Smart City (название рабочее), суперкомпьютерный  центр  «Лаврентьев» и математический центр. Ряд проектов реализуется в коллаборациях с ведущими научно-технологическими организациями России: бор-нейтронозахватную терапию рака (БНЗТ) институты СО РАН разрабатывают вместе с московским НМИЦ онкологии им. Н.Н. Блохина, супер С-тау фабрику (установку для исследования элементарных частиц) — с Российским ядерным центром (РФЯЦ-ВНИИЭФ) в Сарове (Нижегородская область). Глава Сибирского отделения напомнил также о вхождении ФИЦ «Институт цитологии и генетики СОРАН» и ГБНЦ «Вектор» в Научный центр мирового уровня по генетическим технологиям, создаваемый под эгидой Курчатовского института.

Косвенно, но важно. В условиях резкого обострения международной обстановки председатель СО РАН подчеркнул востребованность «научной дипломатии» и сохранения исследовательских коллабораций и контактов, в том числе в орбите Евразийского экономического союза. «Важно поддерживать и при возможности развивать сотрудничество с учеными не только дружественных России стран», — подчеркнул при этом В.Н. Пармон. В заключение он напомнил, что в текущем году отмечается 65-летие Сибирского отделения АН СССР/РАН. «Я надеюсь, что для нас и для всей российской Академии наук этот год станет годом прорыва», — резюмировал председатель СО РАН.

Фото Юлии Поздняковой, «Наука в Сибири»

 

Геофизики создают карту распределения сейсмических шумов для ЦКП СКИФ

Специальная система сейсмического мониторинга фиксирует любые, даже самые мельчайшие, изменения вибрационного фона, чтобы в дальнейшем можно было учитывать эти данные при проведении экспериментов. Тестовые измерения произведены на коллайдере ВЭПП-4М и непосредственно на площадке строительства СКИФа. В данный момент несколько сейсмических станций работают на территории, прилегающей к объекту. «Ускорители заряженных частиц в силу своих параметров очень чувствительны к любым возмущениям внешней среды, например, они хорошо “видят” землетрясения. По сути это своеобразные сейсмографы, только очень большие и дорогие. Комплекс СКИФ — не исключение. Из-за того, что размер пучка в ускорителе совсем маленький, то есть частицы в пучке сильно сконцентрированы, любые возмущения почвы будут на нем сказываться. Например, где-то проедет поезд и раскачает грунт, вибрация вызовет колебания в несколько миллиардов раз меньше метра, но это может существенно изменить параметры пучка», — прокомментировал научный сотрудник ИЯФ СО РАН кандидат физико-математических наук Григорий Николаевич Баранов.

Источник синхротронного излучения — это своеобразный фонарик, который «светит» в пользовательскую станцию. Если этот фонарик начнет колебаться, его эффективный размер — пятно, которое он будет засвечивать — увеличится. Это приведет к тому, что параметры излучения изменятся, они будут уже не такими точными, как требуется. Именно поэтому важно знать, какой вибрационный фон будет присутствовать на экспериментальной площадке. Такие данные необходимо учитывать уже на этапе строительства объекта, чтобы понимать, какой силы должна быть система подавления колебаний.  «Мы хотим, чтобы у нас действовала полноценная система подавления, как на крупных зарубежных установках, к примеру, Большом адронном коллайдере в ЦЕРНе или источнике СИ ESRF во Франции. Пользуясь опытом наших коллег-геофизиков, можно уже сейчас задуматься над тем, чтобы после завершения строительства и запуска в эксплуатацию комплекса СКИФ у нас была налажена некая система сейсмического мониторинга. Для этого по всей площадке, где расположена установка, нужно разместить сейсмические датчики. Даже если в нескольких километрах пройдет поезд, эти датчики будут фиксировать сейсмические волны. Если эти волны будут чрезмерны, конечный пользователь установки будет попросту “выкидывать” побочные данные из эксперимента. Либо система заблаговременно, по принципу обратной связи, сама будет вносить правки в движение пучка заряженных частиц тем самым стабилизируя его, чтобы любое внешнее возмущение отрабатывалось правильным образом», — сказал Григорий Баранов.

 

Максим Родякин Григорий Баранов Петр Дергач Ксения Карюкина с геофизическим оборудованием на площадке строительства СКИФа

Максим Родякин (ИЯФ), Григорий Баранов (ИЯФ), Петр Дергач (ИНГГ), Ксения Карюкина (ИЯФ) с геофизическим оборудованием
на площадке строительства СКИФа

«Специалисты ИНГГ СО РАН и ФИЦ ЕГС РАН имеют большой опыт в сейсмических изысканиях, у них есть современное специализированное оборудование. Они знают, как правильно производить измерения, обрабатывать и интерпретировать полученные данные. Предварительные измерения проводились в ИЯФ СО РАН, на коллайдере ВЭПП-4М. Сейчас мы перешли к замерам вибрационного фона на площадке в Кольцово. Они показали, что большую часть времени амплитуды сейсмических колебаний грунта удовлетворяют требованиям эффективной работы СКИФ, но движение поездов по близлежащему железнодорожному переезду выводят колебания за допустимые нормы. Поэтому по ходу строительства мы будем производить дальнейший контроль и развивать всю систему», — подчеркнул Григорий Баранов.

По словам ученого, система сейсмического мониторинга может выполнять и другие полезные функции, поскольку комплекс СКИФ содержит много компонентов, которые могут вызывать вибрации — к примеру, источники питания в магнитной системе. Даже люди, работающие на установке, будут вносить свой вклад в колебания пучка. Работа насосов, погрузочно-разгрузочных устройств, движение воды в трубах и т.д. – все это может стать бытовыми источниками вибраций. Чтобы вовремя выделить эти вибрации из общего фона, и, при возможности, нейтрализовать их воздействие, необходима подобная система непрерывного мониторинга.

По материалам пресс-службы ИЯФ СО РАН

Фото Юлии Клюшниковой

Строящийся СКИФ получил первые готовые устройства

«У нас есть три больших элемента установки, сегодня мы как раз завершаем первую часть усилительных систем для бустера и линейного ускорителя. Эти уникальные усилители позволят нашим пучкам не только ускоряться и летать по нужным траекториям, но и сформировать нужное высокое качество, чтобы потом мы могли получить рекордное по своим параметрам рентгеновское излучение в основном накопителе СКИФ»,  — рассказал директор ИЯФ СО РАН академик Павел Владимирович Логачёв.

И синхротроны, и элементы линейного ускорителя на стадии формирования пучка требуют усилительных устройств, которые были разработаны и изготовлены по заказу ИЯФ СО РАН новосибирским предприятием радиоэлектронной промышленности ООО «НПП Триада ТВ». По словам П.В.  Логачёва это первый из трех больших элементов установки — усилительные системы для бустера и линейного ускорителя, которые стоят в начале всего комплекса, чтобы сформировать пучки для основного кольца.

 

Павел Логачёв

Заместитель генерального директора «НПП Триада ТВ» Алексей Викторович Зинкевич отметил, что главное требование к таким масштабным проектам — надежность. Основные цели, инженерные задачи, которые решались при разработке усилителей, — максимальная устойчивость параметров изделий и стабильность сигнала в течение всего цикла ускорения, высокий КПД, большой срок службы.

Академик П. Логачёв добавил, что после сборки первой части оборудования — линейного ускорителя и элементов бустерного синхротрона — можно приступать к созданию программного обеспечения по управлению всем ускорительным комплексом. «Работы по написанию ПО трудоемкие и требуют много времени. Если “железо” можно сделать быстро, то программу написать быстро не получится из-за ограниченного числа специалистов с нужным опытом и огромного объема работы», – пояснил директор ИЯФ СО РАН.

По материалам ТАСС

Фото Юлии Поздняковой, Наука в Сибири

В Академгородке весной начнется сборка установки БНЗТ для лечения рака

Специалисты Института ядерной физики им. Г.И. Будкера СО РАН планируют начать предварительную сборку части ускорительного комплекса для лечения рака по перспективному методу бор-нейтронозахватной терапии в апреле 2022 года на базе института в Новосибирске. В дальнейшем установка, работы по изготовлению которой исследователи рассчитывают завершить к концу года, будет перенесена в НМИЦ имени Н. Н. Блохина в Москве для проведения испытаний, сообщил заместитель директора института по научной работе доктор физико-математических наук Петр Андреевич Багрянский.

В августе 2021 г.  при посещении ИЯФ СО РАН вице-премьер РФ Дмитрий Чернышенко поручил главе Минобрнауки Валерию Фалькову разработать комплексный научно-технический проект по созданию и запуску первой в России установки, работающей по перспективному методу лечения рака — бор-нейтронозахватной терапии (БНЗТ). Этот способ направлен на избирательное уничтожение клеток злокачественных опухолей, в которых накапливают изотоп бора, а затем облучают потоком нейтронов. Эксперименты показывают эффективность такого метода лечения опухолей головного мозга и других видов онкологических заболеваний, которые плохо поддаются лечению традиционными срендствами.

«Мы начали эту работу в середине прошлого года. Она состоит из двух частей: собственно из самой установки — это генератор нейтронов для бор-нейтронозахватной терапии, и подготовки помещения в НМИЦ имени Н. Н. Блохина для размещения ускорительного комплекса. Помещение еще не подготовлено, идет только техническое проектирование. За эти полгода мы сделали примерно одну треть от ускорительного комплекса», — рассказал П.А. Багрянский.

Сейчас специалисты ИЯФ СО РАН ведут работы по конструированию и изготовлению оставшихся частей ускорителя. Замдиректора института пояснил, что транспортировка в Москву и запуск комплекса запланирован на 2023 год. Кроме этого, в том же году намечена процедура медицинского лицензирования установки, которая может занять около нескольких месяцев.

По материалам ТАСС

«Силового решения не будет»

В СМИ появилась информация о письме по этому вопросу в Министерство науки и образования РФ за подписями губернатора Новосибирской области Андрея Александровича Травникова, ректора НГУ академика Михаила Петровича Федорука  и моей, а также о позитивном ответе заместителя главы Минобрнауки Алексея Михайловича Медведева. Информация в целом достоверная, но не полная. В частности, ни в одном сообщении не указано, что под обращением стояли не три, а восемь подписей — еще от директоров пяти крупнейших институтов новосибирского Академгородка, кровно заинтересованных в создании единого мощного узла сбора, обработки, хранения и использования данных. Это ФИЦ «Институт цитологии и генетики СО РАН», ФИЦ «Институт катализа им. Г.К. Борескова СО РАН», Институт ядерной физики им. Г.И. Будкера СО РАН, Институт теплофизики им. С.С. Кутателадзе СО РАН и Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН.

Объединение операторов вычислительных мощностей Новосибирского научного центра — действие сложное, но абсолютно необходимое. Для развития Академгородка и Сибирского отделения в целом нам требуется центр супервычислений мощностью от 10, а лучше от 15 петафлопс. На сегодня имеется три узла, каждый мощностью ниже средней, рассредоточенных по нескольким точкам: НГУ, а также совсем небольшому Институту систем информатики им. А.П. Ершова СО РАН, Институту вычислительной математики и математической геофизики СО РАН и ФИЦ «Институт вычислительных технологий».  Последний находится в состоянии глубокого коллапса после лихорадивших его административных пертурбаций и конфликтов, сегодня там даже нет легитимного ученого совета. Предыдущие два отнесены Минобром ко второй категории и не могут рассчитывать на дополнительное, развивающее финансирование.

Между тем, уже сегодня начато строительство синхротрона СКИФ, сдвигаются с точки старта некоторые другие проекты программы развития Новосибирского научного центра («Академгородок 2.0). Необходима консолидация и умощнение вычислительных мощностей: не только «железа», но и технического персонала, инфраструктуры, научной составляющей (computer science). Порознь ничего серьезного не получится, и главная причина этого указана выше: не будет предпосылок для ресурсного обеспечения. А речь идет об инвестировании, по разным оценкам, от 6 до 10 миллиардов рублей. Если же рассматривать вариант со слиянием ресурсов и компетенций в проекте СКЦ «Лаврентьев» на базе НГУ, то Минобрнауки уже сегодня дает принципиальное согласие на поддержку проекта в такой конфигурации (естественно, при неукоснительном выполнении всех положенных при реорганизации регламентов и процедур).

Это единственный возможный вариант, и он предварительно проработан. Прошел ряд встреч с участием главы региона и его заместителя Ирины Викторовны Мануйловой, ректора НГУ, руководства СО РАН, директоров крупнейших исследовательских институтов и председателя Объединенного ученого совета СО РАН по информационным и нанотехнологиям академика Юрия Ивановича Шокина. Их мнение было единогласным: суперкомпьютерный центр в сегодняшней ситуации может быть создан только под эгидой и в рамках НГУ.

В последние дни я читал и слышал упреки в некотором волюнтаризме и  несогласованности действий с руководством всей Российской академии наук. На эту тему у меня был разговор с президентом РАН академиком Александром Михайловичем Сергеевым. Я объяснил ему, что наша инициатива — прямое развитие поручения Президента РФ от 18 апреля 2018 года, в котором ответственными за программу развития ННЦ указаны губернатор Новосибирской области, министерство науки и образования РФ и РАН в лице ее регионального отделения — Сибирского. Я напомнил Александру Михайловичу: СКИФ уже начинает строиться, хотя и с задержкой на три года, и его обеспечение вычислительными мощностями должно быть синхронизировано. Точно так же при прямой поддержке Правительства России идет процесс модернизации НГУ, и первоначальная идея суперкомпьютерного центра «СНЦ ВВОД» на базе ФИЦ ИВТ (что там происходит, я уже сказал) трансформировалась в центр супервычислений «СКЦ Лаврентьев» в структуре Новосибирского университета, растущего и крепнущего буквально на глазах.

Тем более несостоятельны попытки представить проект «Лаврентьев» конкурентом наращиванию вычислительного потенциала Томска и Красноярска. СО РАН последовательно выступает за равномерное и рациональное распределение суперкомпьютерных мощностей по территории России и Сибири, мы готовили в федеральный центр конкретные предложения по созданию соответствующих структур в Красноярске, Иркутске, Новосибирске и Томске, причем в последнем случае — на базе не академических институтов, а университетов. Руководство СО РАН принципиально против конкуренции, мы за коллаборацию с целью формирования единого супервычислительного кольца. Новосибирск должен стать наиболее мощным его элементом, поскольку здесь находятся основные потребители данных, будущие и настоящие. Это СКИФ, ФИЦ ИЦиГ СО РАН и другие центры биоинформатики, это ИТПМ СО РАН с его огромными массивами расчетов по аэрогидроинамике, это институты ядерной физики, катализа, теплофизики и так далее.

Первым шагом видится создание обособленного структурного подразделения НГУ. Это прерогатива наблюдательного совета и ректората университета. Затем мы хотели бы действовать в строгом соответствии с регламентами о реорганизации государственных научных учреждений. То есть поэтапно и коллегиально, при участии ученых советов всех уровней, профильного отделения и руководства РАН, коллективов институтов. Поэтому силового решения не будет. Тем более не вижу причин опасаться каких-либо сокращений: напротив, сегодня налицо дефицит кадров, особенно инженерно-технических. Наши вычислительные институты держат в университете кафедры, которые готовят таких специалистов, но их всё равно не хватает. Еще более преждевременны предположения о передаче в НГУ каких-либо зданий и помещений. Конечно, центр супервычислений требует некоторой локализации, но и в НГУ, и в комплексе зданий ранее единого Вычислительного центра на проспекте Лаврентьева есть пространства для установки новых серверов и другого оборудования, для размещения специалистов.

Наш общий принцип — сначала обозначить замысел, собрать вокруг него всех заинтересованных, а уже затем сообща искать пути реализации. Не хочется драматизировать, но без реализации проекта «Лаврентьев» у Академгородка как исследовательского центра нет будущего. Потому что современная наука не просто продуцирует новые знания, но и транслирует их в виде огромных информационных потоков, без обработки которых просто захлебнется. Идея объединения трех вычислительных организаций под эгидой НГУ — для кого-то неожиданная, но своевременная. Другого пути просто нет.

Фото Алескея Диканского (анонс), Андрея Соболевского (в тексте)