В Академгородке продолжается генетическая революция

Предыдущий аналогичный конгресс состоялся в 2019 году, затем пандемия прервала очное общение специалистов. За эти годы бурно развивались практики работы с «молекулярными скальпелями» под названием CRISPR, позволяющими манипулировать генами и геномами в живых клетках и решать ранее недоступные научные, а в ближайшей перспективе и практические задачи. «Тема стала еще более актуальной, — считает директор ФИЦ «Институт цитологии и генетики СО РАН» (ФИЦ ИЦиГ СО РАН) академик Алексей Владимирович Кочетов. — Эта актуальность проявляется в самых различных аспектах: научном, методическом, юридическом, экономическом, образовательном. В программе конгресса все они нашли свое отражение».

 

На первом плане Дмитрий Жарков и Владимир Коваль

«Судя по составу участников и тематике, это замечательный конгресс», — считает научный руководитель Института химической биологии и фундаментальной медицины (ИХБФМ) СО РАН академик Валентин Викторович Власов. «Еще десять лет назад никто не мог предположить, что самым большим и популярным у абитуриентов станет ФЕН, факультет естественных наук, готовящий химиков и биологов, — поделился ректор Новосибирского государственного университета академик Михаил Петрович Федорук. — И такими же стремительными темпами, какими прогрессируют генетика и генетические технологии, развивается подготовка кадров по этим направлениям, хотя нам есть еще, куда стремиться». Директор ИХБФМ СО РАН кандидат химических наук Владимир Васильевич Коваль отметил расширение тематики конгресса за последние годы: «Теперь это не только редактирование, но и генетические, клеточные технологии в самом широком понимании, синтетическая биология и регенеративная медицина. Диапазон становится всё шире и шире», — сказал В.Коваль.

 

Михаил Федорук и Алексей Кочетов

С пленарным докладом «Клеточные модели нейрогенеративных заболеваний до Всемирного CRISPR-потопа и после» выступил кандидат биологических наук Сергей Петрович Медведев из ФИЦ ИЦиГ СО РАН. Он сделал экскурс в стремительную историю появления генетического редактирования между двумя Нобелевскими премиями — японца Саньиро Яманаки (2012 год, за получение индуцированных плюрипотентных клеток) и 2020 года, когда француженка Эмманюэль Шарпантье и американка Дженнифер Дудна стали нобелиатками за открытие «генетических ножниц» — метода CRISPR/Cas9, то есть технологии, способной «разрезать» ДНК в заранее определенном месте и таким образом «переписывать кодировку» организма по желательным моментам. «Сегодня любой студент-третьекурсник приходит в лабораторию, берет в руки этот инструмент и делает то, что задумал или что поручил научный руководитель», — резюмировал Сергей Медведев, рассказавший, как с помощью CRISPR/Cas9 можно моделировать (прежде всего для лабораторных животных) болезни Паркинсона, Альцгеймера и им подобных.

«Когда мы общаемся, например, с Министерством сельского хозяйства, там не интересуются правовыми или социальными моментами, а сразу спрашивают — что у вас наготове?», — поделился академик А. Кочетов. Но существуют проблемные зоны, не позволяющие применять CRISPR/Cas9 в ряде отраслей, включая медицинские. «Все говорят о хорошем, а я буду о плохом», — анонсировал свой пленарный доклад «Поиски кошки в темной комнате или принципы специфичности адресуемых нуклеаз» член-корреспондент РАН Дмитрий Олегович Жарков из ИХБФМ СО РАН. Прозвучал обзор недостатков эффекторного белка  Cas9 и путей их преодоления: в частности, в зарубежных лабораториях получены модификации с повышенной специфичностью HypACas9 («гипераккуратный») и SuperFiCas9 («супернадёжный»).

 

Сурен Закиян

Как сообщил председатель оргкомитета конгресса CRISPR-2023 доктор биологических наук Сурен Минасович Закиян (ФИЦ ИЦиГ СО РАН), на конгресс зарегистрировалось 340 специалистов  из Москвы, Санкт-Петербурга, Новосибирска, Екатеринбурга, Сочи (университет «Сириус»), Томска, Казани и многих других городов России, а также из Германии, Ирландии и  Армении.  Молодые ученые при этом составляют не менее 40% участников. Для них, помимо прочего, выпущена памятная почтовая открытка с изображением выдающегося отечественного генетика академика Дмитрия Константиновича Беляева. Конгресс продолжает работу до 14 сентября на площадке Академпарка.

Фото Андрея Соболевского

В Академгородке расшифровали структуру человеческого белка репарации

Белок HNEIL2 открыт в 2002 году и с этих пор вызывает большой интерес ученых. С одной стороны, будучи белком репарации, он отвечает за стабильность генома и восстанавливает широкий спектр повреждений. С другой — его активность важно ингибировать (подавлять) во время химиотерапии при лечении онкологических заболеваний, потому что HNEIL2 помогает эффективно восстанавливаться в том числе онкологическим клеткам.

Несмотря на повышенный интерес к hNEIL2, ученым до сих пор не удавалось расшифровать его структуру. Проблема в том, что этот белок состоит из двух доменов, соединенных подвижным элементом, не дающим получить кристалл, структура которого была бы достаточно воспроизводима. Лишь одна исследовательская группа недавно расшифровала структуру похожего на hNEIL2 белка домашнего опоссума.

Ученые ИХБФМ СО РАН первыми в мире смогли получить структуру hNEIL2 с помощью метода HDX-MS. Это метод масс-спектрометрии, где водород заменяется на дейтерий, что позволяет исследовать структуры белков в растворе. Недавно институт прибрел дорогостоящее оборудование, позволяющее развивать HDX-MS в России. 

«Этот метод прогрессивный, интересный и широко востребованный в мире. В последние два года большинство групп, которые занимаются HDX, изучают с помощью него структуру белков коронавируса, а также антител против COVID-19», — рассказал заместитель директора и руководитель Объединенного центра геномных, протеомных и метаболомных исследований ИХБФМ СО РАН кандидат химических наук Владимир Васильевич Коваль. 

Кроме того, HDX-MS позволяет достаточно быстро и просто характеризовать белковые терапевтические препараты с точки зрения их соответствия заявленному образцу. В отличие от химически синтезированных, белковые лекарства требуют такой проверки каждый раз перед выпуском в продажу.

«Изучив структуры белка hNEIL2, мы получили технологическую базу, знания и компетенции, которые в дальнейшем сможем использовать как инструментарий для точного определения структуры белковых комплексов, в том числе и с помощью синхротронного излучения», — отметил Владимир Коваль.

Методы молекулярной кристаллографии, до сих пор не представленные в России, будут развиваться на Сибирском кольцевом источнике фотонов. ИХБФМ является оператором станции на СКИФ, которая отвечает за макромолекулярную кристаллографию белков. Эту станцию планируется построить в рамках первой очереди синхротрона. Предполагается, что она начнет работу уже в 2024 году. 

Сейчас, чтобы прочитать структуру белка, российские ученые ездят в Великобританию, Францию, США либо Израиль. Это долго, дорого и логистически сложно, потому что транспортировка белка требует специальных условий. К тому же некоторые исследования представляют собой коммерческую тайну, и их не вывезешь за рубеж. СКИФ позволит избежать этой проблемы.

«СКИФ — это что-то революционное, по значимости сопоставимое со строительством новосибирского Академгородка. Я уверен, что это разовьет многие научные области, — говорит Владимир Коваль. — Грубо говоря, СКИФ представляет собой очень мощный огромный микроскоп, который по атомам показывает белок. Мы можем посмотреть, как эти атомы расположены, увидеть расстояния между ними. Зная, как выглядит активный центр ферментов, как он меняется в динамике, можно уже подбирать лекарства. Причем на первом-втором этапе ничего синтезировать не приходится, система поиска подгонки сама ищет соединения и вычисляет, какое из них подходит лучше». 

По материалам издания «Наука в Сибири»